Optically active 2,2-dimethyl-1,3,4-triazabicyclo[4.1.0]heptan-5-one: synthesis, spontaneous resolution and absolute configuration

Remir G. Kostvanovsky,*a Pavel E. Dormov,a Peteris Trapencieris,b Boriss Strumfs,b Gulnara K. Kadorkina,a Ivan I. Chervin^a and Ivars Ya. Kalvin's^b

^a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 938 2156; e-mail: kost@center.chph.ras.ru

Bicycle (\pm) -1 crystallises as a conglomerate (space group $P2_1$) and undergoes spontaneous resolution on crystallisation from chloroform or acetone (16-44% ee). The absolute configuration (S)-(-)-1 was determined by synthesis from (S)-Ser-OMe; mutarotation due to the partial conversion of 1 into the corresponding isopropylidene 4 was observed in MeOH solution.

Derivatives of aziridine-2-carboxylic acid (Azy)1-4 have been studied intensively.5-7 Some of them (azimexon and leakadine) show high biological activity.8-10 The asymmetric synthesis of Azy derivatives was reported^{3,4,11} and a higher activity of the L-leakadine (amide of aziridine-2-carboxylic acid, Azy-NH₂) with respect to the racemate was observed. 10 The synthesis of these compounds in enantiopure form is of interest from the point of contemporary interest for chiral drugs. 12

$$\begin{array}{c|c} H_d & H_e \\ O & N & Me_B \\ H_c & N & Me_A \\ H_b & & (\pm)-1 \end{array}$$

The simplest method for obtaining enantiopure materials is their spontaneous resolution by crystallisation, which may occur when the racemate is a conglomerate. 13,14 For the strained aziridine-2-carboxylic acid derivative 2,2-dimethyl-1,3,4-triazabicyclo[4.1.0]heptan-5-one 1⁵ the non-centrosymmetric space group P2₁ was determined by X-ray structural analysis.⁶ This means that compound 1 forms a conglomerate.

Indeed, on crystallisation (from CHCl₃ or acetone) of (±)-1 prepared by a known procedure,⁵ crystalline samples showing (+) or (-) rotation were obtained.†

In order to determine its absolute configuration compound 1 was synthesised from commercial (S)-Ser-OMe hydrochloride $\{[\alpha]_D^{23} = 3.5^{\circ} (c \ 5.0 \ \text{MeOH})\}\$ (Scheme 1), eventually giving (S)-(-)-1.

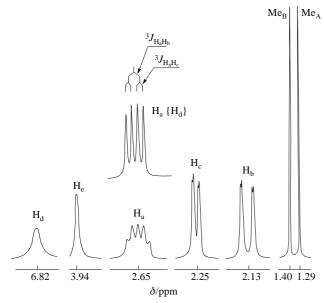


Figure 1 ¹H NMR spectrum of (±)-1 in CDCl₃.

Azy-OMe (S)-(-)-2 was prepared under Mitsunobu conditions¹⁵ and was converted into (\hat{S}) -(-)-1 by a known procedure,⁵ the mp of (-)-2 is higher than that of its racemate: 135-136 °C and 126–127 °C, respectively. The rotation of (S)-(-)-1 in MeOH was found to decrease gradually from -87° to -68.1° (after 1.6 h), -65.7° (after 2.3 h), reaching a constant value of -59.8° after 24 h. According to ¹H NMR, the isomerisation of (S)-(-)-1 into isopropylidenehydrazide (S)-(-)-4 to reach equilibrium $1:4 \approx 2$ (Scheme 2) is responsible for the observed mutarotation.

All compounds were characterised by spectroscopic data (Figure 1). The ¹H NMR spectra of aziridines (S)-(-)- $\mathbf{2}$ - $\mathbf{4}$ were in line with those obtained from earlier detailed investigations of Azy and their ¹⁵N analogues. ¹⁶ The ¹H NMR signals of 1 (Figure 1) were assigned by selective heteronuclear double resonance. Thus, under the conditions $\{H_e, \delta 3.94 \text{ ppm}\}$, the ¹³C NMR signal for carbon Me_A (qqd, δ 24.14 ppm) transforms

Scheme 1 Reagents and conditions: i, NH3, CH2Cl2, then Ph3P-DIAD, CH_2Cl_2 , 1 h, 3–5 °C and 12 h, 20 °C; ii, dry H_2NNH_2 , 1.5 h, –10 °C, then 5 h, 20 °C; iii, Me₂CO, 20 h, 55 °C.

† Characteristics and spectroscopic data. NMR spectra were recorded on a Bruker WM-400 spectrometer (with TMS as an internal standard) at 400.13 MHz (¹H) and 100.62 MHz (¹³C). Optical rotation was measured on 'Perkin Elmer-141' and 'Polamat A' polarimeters. The CD spectra were taken on a JASCO-J-500A instrument with a DP-500N data

(\pm)-1: obtained by method described in ref. 5, mp 126–127 °C (acetone). 1 H NMR (CDCl₃) δ : 1.29 (s, 3H, Me_A), 1.40 (s, 3H, Me_B), 2.13 (dd, 1H, 11.171 (CDC₁₃) O. 1.27 (S, 511, Me_A), 1.40 (S, 511, Me_B), 2.13 (dd, 1H, H_b, ${}^{3}J_{ab}$ 5.9 Hz, ${}^{2}J_{bc}$ 1.0 Hz), 2.25 (dd, 1H, H_c, ${}^{3}J_{ac}$ 3.0 Hz, ${}^{2}J_{bc}$ 1.0 Hz), 2.65 (ddd, 1H, H_a, ${}^{3}J_{ab}$ 5.9 Hz, ${}^{3}J_{ac}$ 3.0 Hz, ${}^{4}J_{ad}$ 2.7 Hz), 3.94 (s, 1H, H_c), 6.82 (s, 1H, H_d). 13 C NMR (CDCl₃) δ : 24.14 (qqd, Me_A, ${}^{1}J$ 127.9 Hz, ${}^{3}J_{CH}$ 4.4 Hz, ${}^{3}J_{CH}$ 5.0 Hz), 24.98 (qq, Me_B, ${}^{1}J$ 127.9 Hz, ${}^{3}J_{CH}$ 4.4 Hz), 25.08 (ddd, 7-C, ${}^{1}J_{CH_b}$ 181.7 Hz, ${}^{1}J_{CH_c}$ 162.8 Hz, ${}^{2}J_{CH_a}$ 2.2 Hz), 32.73 (d, 6-C, ${}^{1}J$ 183.8 Hz), 67.80 (s, 2-C), 169.48 (s, 5-C).

Spontaneous resolution of (\pm)-1: by crystallisation of (\pm)-1 (68 mg) from CHCl $_3$ at slow evaporation at 20 °C samples (+)-1 {2.0 mg, druse, $[\alpha]_D^{00} = 14.2^{\circ}$ (c 0.2, MeOH), ee 16.3%} or (–)-1 {4.6 mg, small crystals, $[\alpha]_D^{10} = -14.8^{\circ}$ (c 0.5, MeOH), ee 17.0%} were obtained. The crystallisation of (±)-1 (34 mg) from acetone at 4–6 °C gave one crystal (+)-1 $\{1 \text{ mg}, [\alpha]_D^{20} = 40.9^{\circ} (c \ 0.1, \text{EtOH}), \text{ ee } 44.3\% \}.$

(S)-(-)-1: yield 86%, mp 135–136 °C (acetone), $[\alpha]_D^{20} = -87^\circ$ (c 2.1, MeOH), $[\alpha]_D^{20} = -92.2^\circ$ (c 1.2, EtOH), $[\alpha]_D^{20} = -40.8^\circ$ (c 0.9, CHCl₃), $\Delta \varepsilon = -3.5$ (237.5 nm), $\Delta \varepsilon = 0$ (223 nm), $\Delta \varepsilon = +7.7$ (212.5 nm) (c 0.13 mol l⁻¹,

(S)-(-)-2: yield 36%, bp 72 °C (40 torr), $[\alpha]_D^{20} = -23.1^\circ$ (c 1.0, MeOH) (cf. ref. 19).

(S)-(-)-3: yield 50%, oil, $[\alpha]_D^{20} = -27.8^{\circ}$ (c 1.0, MeOH). (S)-(-)-4: mp 117-118 °C (C_6H_6) (cf. ref. 5); $[\alpha]_D^{20} = -6.7^{\circ}$ (c 0.2, MeOH), calculated from $[\alpha]_{20}^{20}$ for pure (*S*)-(–)-1 and $[\alpha]_{20}^{20}$ = –34.3° (*c* 0.2, MeOH) for mixture 4:1 = 2. ¹H NMR (CDCl₃) δ : 1.68 (br. s, 1H, H_e), 1.87 (s, 3H, Me_A), 1.90 (br. m, 1H, H_b), 2.06 (s, 3H, Me_B), 2.09 (br. m, 1H, H_c), 2.83 (br. m, 1H, H_a), 8.51 (br. s, 1H, H_d).

b Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia. E-mail: peteris@osi.lanet.lv

$$(S)-(-)-1 \xrightarrow{MeOH} \begin{array}{c} H_d \\ N \\ N \\ Me_B \\ MeB \\ (S)-(-)-4 \end{array}$$

Scheme 2

into qq, and its coupling constant $^3J_{\mathrm{Me_A-H_e}}$ 5.0 Hz. At the same time under the conditions {Me_B, δ 1.40 ppm}, the spectrum for carbon Me_B (qq, δ 24.98 ppm) transforms into a pure q. This is in agreement with the molecular structure of 1:6 dihedral angles Me_A-C-N-H_e \approx 0°, Me_B-C-N-H_e \approx 90°. In addition, we observed two features in the 1 H NMR spectrum of 1: large coupling constant $^4J_{\mathrm{H_aCNH_d}}$ 2.7 Hz and a strikingly high difference in the coupling constants Δ^1J_{CH} = 18.9 Hz between protons H_b and H_c (usually for aziridine⁵ this difference does not exceed 11.6 Hz). 17,18

This work was supported by the Russian Foundation for Basic Research (grant no. 97-03-33021) and the Latvian Scientific Council (grant no. 722).

References

- 1 K. Okawa and K. Nakajima, Biopolymers, 1981, 20, 1811.
- 2 K. Okawa, K. Nakajima and T. Tanaka, J. Synth. Org. Chem. Jpn., 1984, 42, 390.
- 3 D. Tanner, Angew. Chem., Int. Ed. Engl., 1994, 33, 599.
- 4 W. H. Pearson, B. W. Lian and S. C. Bergmeier, *Aziridines and Azirines: Monocyclic*, in *Comprehensive Heterocyclic Chemistry II*, ed. A. Padwa, Pergamon, New York, 1996, vol. 1A, p. 1.
- 5 P. T. Trapentsier, I. Ya. Kalvin'sh, E. E. Liepin'sh, E. Ya. Lukevits, G. A. Bremanis and A. V. Eremeev, *Khim. Geterotsikl. Soedin.*, 1985, 774 [Chem. Heterocycl. Compd. (Engl. Transl.), 1985, 21, 646].

- 6 A. F. Mishniev, M. F. Bundule, Ya. Ya. Bleidelis, P. T. Trapentsier, I. Ya. Kalvin'sh and E. Ya. Lukevits, *Khim. Geterotsikl. Soedin.*, 1986, 477 [Chem. Heterocycl. Compd. (Engl. Transl.), 1986, 22, 390].
- 7 K. F. Koehler, H. Zaddach, G. K. Kadorkina, I. I. Chervin and R. G. Kostyanovsky, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 2136 (Russ. Chem. Bull., 1993, 42, 2049).
- 8 U. Bicker, Fortsch. Med., 1978, 96, 661.
- I. Ya. Kalvin'sh and E. B. Astapenok, *Belg. Patent*, 860239, 1978 (*Chem. Abstr.*, 1979, 90, 34103j).
- I. Ya. Kalvin's, N. M. Gipsh, A. G. Merson, E. B. Astapenok and P. T. Trapentsier, USSR Inventor's Certificate no. 787994, (Byull. Izobret., 1980, no. 46, 214).
- 11 K. Jahnisch, F. Grundemann and A. Kunath, XIII International Symposium: Synthesis in Organic Chemistry, Oxford, 1993.
- 12 S. T. Stinson, Chem. Eng. News, 1997, 75 (42), 38.
- 13 J. Jacques, A. Collet and S. H. Wilen, Enantiomers, Racemates, and Resolutions, Krieger Publ. Comp., Malabar, Florida, 1994.
- 14 G. A. Potter, C. Garcia, R. McCague, B. Adger and A. Collet, Angew. Chem., Int. Ed. Engl., 1996, 35, 1666.
- 15 O. Mitsunobu, Synthesis, 1981, 1.
- 16 I. I. Chervin, A. A. Fomichov, A. S. Moskalenko, N. L. Zaichenko, A. E. Aliev, A. V. Prosyanik, V. N. Voznesenskii and R. G. Kostyanovsky, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1988, 1110 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 972).
- I. I. Chervin, A. E. Aliev, V. N. Voznesenskii, S. V. Varlamov and R. G. Kostyanovsky, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 1917 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 36, 1781).
- 18 I. I. Chervin, A. E. Aliev, V. N. Voznesenskii and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1992, 1688 (Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1312).
- 19 G. V. Schustov, S. N. Denisenko, I. I. Chervin and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1988, 1606 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 1422).

Received: Moscow, 17th September 1998 Cambridge, 5th November 1998; Com. 8/07878E